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ABSTRACTL

It Is found that \finite perturbation of the ion orbits

leads to a nonlinear frequency shift that reduces the mode frequency

and has a weak stabilizing effect on the lower-hybrid drift instability.

This result Is obtained from a self-consistent solution of the Viasov-

Poisson equations using perturbation theory in which the nonlinear die-

lectric function and the nonlinear temporal evolution of a single unstable

mode in the low drift velocity regime are calculated analytically.



-2-

I. INTRODUCTION

The linear theory of the lower-hybrid drift instability is well

understood and has been discussed in detail by Davidson et al. 1 When

the amplitude of the wave is small but finite after a time equal to many

multiples of the growth time, further evolution will be different

from exponential growth at very small amplitudes. In order to analyze

this, the nonlinear dielectric response function and the nonlinear temporal

evolution of a single unstable mode are derived self-consistently by using

perturbation theory to solve the Vlasov and Poisson equations. The single-

mode approximation is valid for the instability when the plasma parameters

are close to those for linear marginal stability. This requires vE <cvt

(the low drift velocity regime) for the lower hybrid drift instability,

where vE *cE/B is the equilibrium ExB drift velocity and v2 =T./M is
ti I

the ion thermal speed. M and T. are the ion mass and temperature, res-

pectively. Similar single mode studies include: modulation of the Lang-

muir wave due to weak nonlinearity2,3; nonlinear evolution of drift-

cyclotron and drift-cone instabilities both in theory and simulation.8

In this paper we demonstrate that a finite amplitude perturbation of

the ion orbits develops during growth which leads to a weakly stabilizing non-

linear shift of the lower-hybrid drift mode frequency. The largest shifts in

the mode frequency occur for modes with wavelengths much longer than that of

the most unstable mode (kek M), at which wevenumbers the lower-hybrid drift

instability converts Into the drift cyclotron Instability.

For simplicity, we use a one-dimensional slab configuration shown in

Fig. 1; wave propagation is in the x direction; the magnetic field is uni-

form and In the z direction; the density gradient is in the y direction.

4..d
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FIG. 1 Slab coordinates for lower-hybrid drift instability.



The ions are treated as unmagnetized because the wave frequency and growth

rate are much greater than the ion cyclotron frequency. The ions are in

force balance; that is, the force due to the ion pressure gradient in y can-

cels that of the equilibrium electric field. The lower-hybrid-drift instab-

ility is analyzed in the electrostatic limit; electromagnetic effects are

assumed to be small.

In Sec. II, the nonlinear dielectric response is calculated by

solving the coupled Vlasov-Poisson equations, and a nonlinear dispersion rela-

tion is obtained. Section III is devoted to a derivation of the time evolu-

tion of the lower-hybrid drift instability. The field energy level at which

saturation might occur and the frequency shift due to the finite amplitude

of the wave are also determined. Finally, conclusions and a comparative dis-

cussion of several saturation mechanisms are given in Sec. IV.

II. DERIVATION OF THE NONLINEAR DIELECTRIC FUNCTION

We follow the method of reductive perturbation theory.z we

assume that thedistribution functions FS(y,v,t) for species s and the

electric potential *(x,t) can be expanded as

FS(y,vt) PS(yI )  n Yas t)o ns + C.c. (1)
n-i n(y

n  .

and

*(xt) C n (xt).ins + C.c.
n,-i

where
U V

(Sy'Y'tln d (ly,Y,t) 0,..11
nj 0'-

- --h-



nj-0 nj

The small parameters is C, which is on the order of e*/T.4cl. kiand w

are the wave number and frequency of a single mode. Quasilinear analy-

sis indicates that current relaxation (the relative drift between

the electrons and ions goes to zero) can cause saturation for v E<V ti,

However, the effect of current relaxation is small for v C iThere-

fore, we shall specialize to the case v E4cvt. and treat the density gra-

dient and vyE as constant in our derivation. The distribution function

F .j(y,v,t) can then be expressed as

F .(~,~) -n (Y)f (v).(6
nj a nj-

The Poisson equation of the system is

-72 4 fn IS (f f) (7)

Substituting Eqs. (1) and (2) into Eq. (7) yields

(nk)~ 2 4ine (?- 8n f0

Since the characteristic frequency of the lower-hybrid drift instability

Is much less than the electron plasa and cyclotron frequencies, it is

assumed that electrons respond to the wave linearly, I.e.,

( 2
-4noe jdy X U-x(nk,no) (nk) (9

n a n (9



where Xe is the linear electron susceptibility. To justify further the

assumption of a linear electron response, we also assume a value of

zero for the plasma beta (plasma pressuredcmagnetic pressure) and T n0
e

so that electron resonance broadening can be neglected. For finite elec-

tron temperature and plasma beta, electron resonance broadening can stab-

ilize the instability. 10,11 Using Eqs. (3), (4) and (9), Eqs. (8) re-

duces to

(1 + Xe(nk,nw)](nk) ,nj - 4wn e ffj  dv (10)

The Vlasov equation for the ion distribution in one dimension is

f i + v af - a fi 0 01)at ax a x av(11

which can be rewritten as

df + a af (12)

so that fl can be integrated over the characteristics corresponding to

the unperturbed orbits, i.e., xvt. We obtain, as usual,

0 f a dr . (13)

00 / ax3v

Expansion of Eq. (13) in the series given by Eqs. (1) and (2) yields

Iola=



't Nip0  + m (np-e c.c.)]

L ej t f (iOnko e ine' + C.c.)

t-0

* _______' ae c.c.)j dt' .(14)

Convergence of the series solution for the perturbed distribution function

requires that the electric potential cause only a small perturbation to

the unperturbed orbits. Hence, ion trapping is excluded by this assumption.

One should also note that the superscript i for ions has been dropped

from Eq. (14). Equating coefficients of exp(ine) at the same order in e in

Eq. (14) yields

f 01 0 (15)

and

f10vV

where V w/k and f 00 is the equilibrium ion distribution function in the

absence of perturbation. We then substitute Eq. (16) into Eq. (10) to obtain
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xek=]2,1 4n 0.a2 afo,007 v

+ X e(ew 10 -1- fJ dv14 v-V

S" k2xi (k,w) 10 , (17)

which yields the linear dielectric function O(kw),

D(k,w) 1 + Xe(k,w) + Xi(k,w) (18)

We now proceed to calculate the second order components. Assuming

W=j r+i6 and S- 0, and equating coefficients of the constant terms in Eq.

(14) gives

ek - * - + 0 (If)

02 - 26 10 v 10 av (19)

Substituting flO by using Eq. (16), we obtain the quasilinear modification

to the distribution function,

2~1  a /afoa/av)
02 2 (20)!M10 av (v- V)/

The component f11 results from the second order terms of Eq. (14) for exp(i8),

f = - (21)M v-V

L
- -. --- '**:J ... . . . .. . . .
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Then, following the steps used in deriving Eq. (17) and Eq. (18), we

obtain from Eq. (10)

O(k,w)o11  u 0 . (22)

The components f and 1 are uncoupled from the lower order compo-

nents and are irrelevant to the rest of the calculation. Therefore, we

set f1 1 0 =0 in the rest of the analysis.

Equating the coefficients of the second harmonic terms (2w ,2k)

in Eq. (14) give

I 2el 1 3 /af00 '/av "~20  af l'ay 23
f. . . .... + - . (23)

02M "-v V v v-V M v-V

The first term appearing on the right side of Eq. (23) is the modification

due to the unshielded second harmonic oscillation of a single wave, and

the second term represents the shielded effect. Similarly, Eqs. (10) and

(23) yield

2 2
-20 2 r ad - dv . (24)

20 8k 20(2k2w) M f v-V av v-V)

For the third order component f12, Eq. (14) gives

f 3f 0 2/v * af 2 0 /av afoo /av +fo* ,ay

12 M 10 - 10 12 20
f2 *0 v-V v-V v-V v-V /

(25)

K 1* ** ;
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Using f 10  f02 and f20 from Eqs. (16), (20) and (23), we find that

2 e 1 0 I1 2 /fo0 av

12 I V aV2  (V-V)'/

a I a _foo_ v

2 v-V av v-V 3v v-V /

2af /3__ (3 'v)
p8 i 1 0 a 00')

8k D(2k,2W) v-V av v-V / V-V v v-V /

e f0/v(26)
R M 12 v-V

Substituting Eq. (26) into Eq. (10) for 12, combining to obtain M0i0+ 2@12,

and then using Eqs. (2), (17) and (22) yields the nonlinear dispersion relation

O(k'w)jl ! P 1 dv

k V -V 3v 2  (v -V) 2)

" dv
v-V av rV V 3v V -V..L.± ..... a aoo/avj dvI[ '
2 r.1. 1 a/a 2

+ - Pi- -- -- I-f dv •I
8k2D(2k,2w) v - V av V - V/I

4( (27)



The first term on the right side is the nonlinear coupling of the r
potential with the quasilinear perturbation. The last two terms arise from

the nonlinear coupling of second harmonic variations in f and 0 with

the perturbations at the fundamental, with and without plasma shielding

effects.

We define W(z) by

W(z) - 2 f dv (28)

where zuV/v ti "/kv t! The quasilinear term gives

I a a2 / 3f00 /3v d 1 d 4W(Z) (29)
v-V -av 1V(v-) / 12Y 6 a dz4

t"

The unshielded second harmonic effect becomes

f/ 3V)0la 1 d 4W(Z)-d- -- 7---7,
V-V 3[v v-V Av v-V ] 16vti

(30)

and the term associated with the shielded second harmonic oscillation is

22
2Wp i f" I a f a d

8k2D(2k,2w) v-V 3v ( v-V )]

2 2 V6 0(k2(31)32 D ti(2,s) d

- - ...-. ,



By using Eqs. (29), (30) and (31), we rewrite Eq. (27) as

D'k'w) d W 3 z 221 (32)
3 0 2k 2X 20(2k,2w) d

where 0-e0 1IT iand XDis the ion Debye length. The quasilinear term

and the unshielded second harmonic effect are combined in the first term

on the right side of Eq. (32).

Ill. NONLINEAR EVOLUTION AND FREQUENCY SHIFT

In this section, we estimate the field energy at saturation

caused by a finite nonlinear frequency shift by solving the nonlinear

dispersion relation. When the wave amplitude is very small, Eq. (32)

reduces to the usual linear dispersion relation

0(k,w) - 0 R(k,wn) + il01 (k , ') .(33)

Let us examine Eq. (33) in the lower drift velocity regime characterized by

Iy/Wi r I , V and y E 4 't1(4

where w rand y are the real and imaginary parts of frequency, respect-

ively. The dielectric function for cold electrons and Maxwellian ions is

expressed as

-~~~~ ia. , . --
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2

2 .~ 7 = 2  2 2

The real part of the frequency is determined to zeroth order in IY/Wr I by

2

0R(k.w) I + !2pe + r (36)
W ce k AD wr-kv E

The solution is

W - k k2  (37)
r 22Z E 0k +k

m

and the growth rate y -Ol 1/(30R /3W) 0 is given by

- k 1kA
y 2 m2-- - - L(E (38)

(I +k 1kM) 3  k vt

where

km [f1 i+W21/W2] (39)

is the wave number of the most unstable mode, and

fth +1 W4Id

is the lower hybrid frequency.9

.~; .....
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When the amplitude of the wave is small but finite, we expand Eq.

(32) around w by replacing w with w 0 i(3/3t) and use Eqs. (35)

and (36), to obtain

+ ia) -L- (A +iB)jII 2 (41)
3tI

where

a I ( 3i)o/ R/aw)°  t -y/W , (42)

(W -kvE)2 4
A - o+ E (43)

8kv E k2 XD DR (2k ,2w )

and

B - -5 +2 6 (44)IT k 2 XDDR (2k, 2w

D R 0

By using Eqs. (36) and (39), we get

r[ < : .. D- ( 2 k ,4 k) - 1 M k m(
l Z- -- (45)

3k2

Subs.iucing Eq. (45) into Eqs. (43) and (44), and using Eqs. (29) through

(32), chtz relative strengths of the nonlinear contributions from the quasi-

linear modification (ql), the bare second harmonic oscillation (b) and

its shielded effect (s) are given as the ratios,

A bt.
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k2
A A4 - -M
qI  (2k, 2w))b (2k,2 0 ) s 2

k 
2

20 -15 8 -M . 47)
ql B(2k.2wo)b  (2k,2w o)

For the most unstable mode, k-k , the three nonlinear contributions tom

the ion distribution function are comparable. For k/k € 1 the shieldedm

second harmonic contribution dominates the nonlinear modification of the

ion response. This is because the second harmonic perturbation is very

close to satisfying the linear dispersion relation for k<<km, i.e., D(2k,2w0 )

nearly vanishes.

In order to obtain the time evolution of the wave amplitude and

frequency shift, we define 0 -r exp(-is), where both r and s are real. Eq.

(42) becomes

a; - r; - A 3 , (48)

and

r"+ r; - yr a Br3  (49)

Eliminating r, we obtain

m A~aB 2
-,2r (50)

where the first term is the linear correction to the frequency in the

presence of growth, and the second term is the nonlinear frequency shift

which grows in time with r2 (i.e., leI 1/TI 2 ). Eliminating ri, we obtain
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;. (+. + B-,A r2) r  (51)

Integration of Eq. (51) yields

2. . 2  cce2 .tt/ (1 + C12)

r 1 +ce 2"y tz (1 + 2) (52)

where

a . t") Y (53)

is the field energy level at saturation.

From Eqs. (4 2) through (47), it is obvious that the quasilinear

effect and the shielded second harmonic oscillation stabilize a single

lower-hybrid wave, i.e., they nonlinearly reduce growth. The nonlinearity

due to the bare second harmonic oscillation enhances growth and raises the

saturation level. If r wr(t,,O) -r, Eq. (52) gives

2 t

r (t) ,r (5)
2 2 t

r

and Eq. (50) becomes

r2 t

-.)" -- i - Tr ' --.'.

12 1= +ar. .
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We identify the second term on the right side of Eq. (55) as a nonlinear

shift of the mode frequency.

IV. CONCLUSION

A nonlinear dispersion relation for the lower-hybrid drift instab-

ility was derived. tie obtained the saturation field energy and the nonlinear

frequency shift at saturation. With use of Eqs. (35) through (4+4), Eq. (53)

gives

ei_ 2 
, / ( -3k 1 (56)

sat m m

Extracting the nonlinear part of s in Eq. (55) gives

1 (57)

s+3 k +1k

m m

at saturation in the limit v /v 1.

In Fig. 2 we present Jei/T(lsat , the frequency shift Awsa t , linear

frequency W0 and growth rate y versus k/km for vE/vti .0.3. We note that

the saturation amplitude leI/TiIs t is much less than unity only if k~ckm.

However, from Eq. (57) we observe that 4w sat approaches -w 0 for kc km .

This violates the assumptions of our perturbation theory. Never-theless,

it is true that lw/wo Is largest for long wavelength modes k<ckm,

and that Eqs. (50) and (55) are valid only for le;i/Tij, Jaw/w 0o 1. Also

from Eqs. (37), (39) and (4O), we notice that w becomes smaller than the

'- * - " "'*' -" U r- - . _.... . " , '*,9-'-- ;
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01 vI 

a

I0~

00.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

K/Km

FIG. 2 Saturated lower-hybrid drift mode amplitude li I /T. isatduton-

linear frequency shift mechanism, normalized frequency w r/wth" growth

rate y/w Zh' and nonlinear frequency shift asat /W 1h as functions of

k/k mfor v E/vt 00.3. w~h is the lower hybrid frequency, and k Mis

the wave number of the most unstable mode. Note that lei /T !C

only for k/k cl, and that -iaw 4c w only for k/k >1.
m sat rM
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ion cyclotron frequency for k <0.4km when v E/Vti -0.3. Therefore, our

assumption of unmagnetized ions breaks down, and these long wavelength

lower-hybrid drift modes convert into ion cyclotron drift modes. Many

studies4-8 have shown that a nonlinear ion orbit perturbation induces

a frequency shift which can stabilize the ion cyclotron drift instability.

For modes with k>km, which includes the most unstable mode, k-km,

lei/Ti- f)(1), which is too large and thus also invalidates our per-

turbation theory. For these short wavelength modes, we expect that other

nonlinear effects will be the dominant saturation mechanisms, for example,

trapping or quasilinear diffusion.

The nonlinear frequency shift does not appear to be an efficient

mechanism for saturating the lower-hybrid drift instability. However, it

is important to compare some of the more promising saturation mechanisms

and ascertain whether the nonlinear frequency shift effect should have

been included in their descriptions.

Let us restrict our discussion to the low drift regime vE vti and

T cT i . By using Eqs. (39), (43) and (50), the field energy, a=(E2/Si),

for which Aw--O.lw (nominal value) is

k2 k 4(

+ 1) ).6 I ( [l - m (-Lm ) (58)

m _j
where Aw stands for the nonlinear frequency shift and w-w 0/(I 2 ) Is the

real part of mode frequency Including the linear correction term. Note that

the right side of Eq. (58) is a function of k/km and vE/Vti, and not a

function of Te/T i.

''4 11 1
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An oft cited saturation mechanism is based on ion trapping. This

is also a single-wave effect. For vE>>Vti, Winske et ai estimated that

ion trapping requires

trap vt( I

where C is order of 0.1 to fit their simulation data. For the low drift

regime, i.e., vE<Vti, Chen et al 1 showed that above the threshold given

in Eq. (59), saturation occurs when

22/Z) a 1 v(
p C \nT/trap 1 - (60)

k 
2

m

This estimate was calculated on the basis of energy conservation; as the

ions trap, the velocity distribution flattens in the neighborhood of the

wave phase velocity v-.w/k liberating kinetic energy that is then converted

into wave energy.9 ,13 Simulations described in Ref. 13 demonstrated that

the lower-hybrid drift instability was stabilized by ion trapping at ampli-

tude consistent with Eq. (60) when vE was kept constant in time.

Another possible saturation mechanism is stabilization via current

relaxation,9 which gives

pe cc sg t

This mechanism can apply to single wave cases or turbulent conditions.
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Finally, saturetion due to electron resonance broadening10,11,1
4

yields

(12 /2 m ~~ (7v Ti, (62
1 b

for plasmas with nonzero T . This equation is given in Ref. 11 without
e

derivation. This mechanism requires the presence of turbulence.

Figure 3 is a plot of (8 /nT i) , , (8s/nTi)trap and ( s/nT )cr

versus k/km  for M/m-3672 , v E/V -0.3 , and T e/T. -0.25 . m is

the electron mass. It is seen, except for k ,km that (P/nTi)A is

much larger than (Ss/nTi)trap and (es/nTi)cr and thus the frequency

shift is important only for k<0.lkm at which the lower-hybrid drift mode is

converted into a drift cyclotron mode.

In Fig. 4 we present (s/nTi) P /nT dtrap , (s/nT, )cr

and (8 /nTi)rb versus v E/Vti for M/m -3672 , T /T. 0.25 . For thes ir E i C

parameters chosen, it can be seen that for vE/Vti <0.2 the lowest satura-

tion amplitudes are achieved by ion trapping. Again it shows that for finite

k/k the nonlinear frequency shift is insignificant at the saturation ampli-m

tudes suggested by the other proposed saturation mechanisms. It is also

noted that the saturation level due to current relaxation is only slightly

higher than that of electron resonance broadening for these parameters;

for Te/T. "0.25, (P /nT) r 1.38(./nTi)rb.

In conclusion, we have shown that a nonlinear frequency shift has

a weakly stabilizing influence on the lower-hybrid drift instability. Ion

trapping, current relaxation, and electron resonance broadening are more

likely saturation mechanisms; which of these actually accounts for satur-

ation depends on the plasma parameters.

6..Aa
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10.

10

(AW=- trapK0.Km)
.42

10

r.b.

105

10.0 0.2 0.4 0.6 0.8 1.0 1.2

VE/?

FIG. 4Saturated lower-hybrid drift mode amplitudes 8 InT. as functions of

v E/iv for N/mu 3672 and T I T. f-0.25. The amplitudes corresponding

to three saturation mechanisms [ion traping (trap), current relaxa-

tion (c.r.), and electron resonance broadening (r.b.)J are compared

to that for which awin-O.lw for various values of k. Only for

k O.lk and moderate values of v /Vt. are the frequency shifts signi-mE
ficant at the saturated amplitudes given.
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